首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   107篇
  国内免费   110篇
化学   759篇
晶体学   3篇
力学   16篇
综合类   3篇
物理学   19篇
  2023年   13篇
  2022年   9篇
  2021年   22篇
  2020年   35篇
  2019年   30篇
  2018年   18篇
  2017年   27篇
  2016年   44篇
  2015年   42篇
  2014年   44篇
  2013年   62篇
  2012年   72篇
  2011年   42篇
  2010年   25篇
  2009年   45篇
  2008年   53篇
  2007年   38篇
  2006年   41篇
  2005年   28篇
  2004年   35篇
  2003年   28篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有800条查询结果,搜索用时 31 毫秒
71.
Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio‐molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer‐by‐layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio‐molecules using external triggers such as IR‐light.

  相似文献   

72.
High‐performance catalysts and photovoltaics are required for building an environmentally sustainable society. Because catalytic and photovoltaic reactions occur at the interfaces between reactants and surfaces, the chemical, physical, and structural properties of interfaces have been the focus of much research. To improve the performance of these materials further, inorganic porous materials with hierarchic porous architectures have been fabricated. The breath figure technique allows preparing porous films by using water droplets as templates. In this study, a valuable preparation method for hierarchic porous inorganic materials is shown. Hierarchic porous materials are prepared from surface‐coated inorganic nanoparticles with amphiphilic copolymers having catechol moieties followed by sintering. Micron‐scale pores are prepared by using water droplets as templates, and nanoscale pores are formed between the nanoparticles. The fabrication method allows the preparation of hierarchic porous films from inorganic nanoparticles of various shapes and materials.

  相似文献   

73.
相变微胶囊改性UHMWPE复合材料的摩擦学性能   总被引:2,自引:2,他引:0  
以石蜡为囊芯,蜜胺树脂为高分子囊壁材料,采用原位聚合法制备了相变微胶囊,并将其作为填料添加入超高分子量聚乙烯基体中,制得相变微胶囊改性UHMWPE复合材料.分析了该复合材料的硬度和物相组成,并研究了其在室温,低速和高速试验条件下的摩擦磨损性能.结果表明:微胶囊填料的加入可以起到较好的减摩降磨作用,填料的最适宜添加比例为20%,在低速试验条件下经改性的复合材料摩擦系数较纯UHMWPE降低60%以上,高速试验条件下改性后的复合材料耐磨性较之纯UHMWPE有明显提高,不同试验条件下材料呈现不同的磨损机理.  相似文献   
74.
通过三点弯动态冲击实验和数值模拟方法,研究了分支交错层状仿生复合材料的动态断裂韧性。首先设计并制备了分支交错层状仿贝壳复合材料试样,即将一种脆性刚性材料和一种橡胶类材料分别作为复合材料的硬质层和软胶层;随后采用改进的分离式Hopkinson压杆装置进行了三点弯冲击实验;接着讨论了初始冲击速度、硬质材料长宽比、软质材料层厚度对复合材料试样动态断裂行为的影响;最后采用ABAQUS有限元数值模拟,研究了不同宽度和不同冲击方向对复合材料试样动态断裂韧性和裂纹扩展的影响。结果表明:随着冲击速度和硬质材料长宽比增加、软胶层厚度减小,裂纹越倾向于沿直线扩展,反之,裂纹越倾向于绕过硬质材料沿着软胶层呈折线扩展;试样的峰值动载荷和起裂时间也随之增大。有限元模拟结果表明:随着结构总宽度的增大,试样断裂韧性增加,裂纹倾向于绕过硬质材料沿着软胶层扩展;采用实验设计的冲击方向时,试样的断裂韧性高于其他方向。  相似文献   
75.
Copper(II) chelates of composition CuL2 were synthesized based on 4-aminomethylene derivatives of 5-thiopyrazoles (LH). The complexes were studied by UV, IR, ESR, and EXAFS spectroscopy, magnetochemistry, and X-ray diffraction analysis. The coordination polyhedra in the complexes are pseudotetrahedra or octahedra of the types CuN2S2 or CuN4S2, respectively, which are distorted due to the Jahn—Teller effect. The UV and ESR spectra of copper chelates with a six-coordinate metallocycle formed by the N and S atoms of the azomethine ligand and the nitrogen atom of the quinoline substituent (R) of the C=N−R fragment are most similar to the spectra observed for metals involved in the active centers of natural metalloenzymes (“blue” copper proteins). Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1891–1896, November, 2000.  相似文献   
76.
77.
In view of the nature of orderness in structure and the mesomorphism in property of liquid crystal, the function of which is further exploited by integrating it with the feature of crown ether. The monoarmed crown ether liquid crystals are successfully applied to the imitation of biomembrane transport. Binary component membrane composed of crown ether liquid crystal and PVC was first developed. Such a novel model of biomimetic membrane is capable of imitating ingeniously the thermocontrolling transport of biomembrane, thus the essential function of liquid crystal in membane transport is more fully exploited. It was suggested, consequently, that the molecules of the crown ether liquid crystal could assemble themselves to form ionic channels, as they exist in mesophase.Of still more significance is that the thermocontrolling transport of ions through the membrane is found to be operative selectively and the permeation of ion is under the direct influence of the thermal turmoil of the crown ether liquid cr  相似文献   
78.
An efficient protocol to synthesize iodohydrins from alkenes is presented. Reactions were conducted in aqueous media using safe and readily available sodium iodide (the most abundant form of the element), and a highly convenient oxidant such as hydrogen peroxide. Addition of a protic acid triggers a faster and efficient process, a role formally related to that played by haloperoxidase enzymes in naturally occurring transformations. The successful application of these conditions to multigram scale preparations and over natural products derivatives is also discussed.  相似文献   
79.
Polyurea microcapsules about 2.5μm in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.  相似文献   
80.
In vitro biomimetic mineralization by means of nanotechnology allows the formation of calcium carbonate polymorphs at low temperatures (<25 degrees C) under a CO(2) atmosphere of 500-1500 ppm. A two-dimensional zinc-ion ordered array (zinc array), which acts as an active-site mimic of carbonic anhydrase, has been prepared by immersing the self-organized monolayer of 3-(2-imidazolin-1-y)propyltriethosilane on mica (ImSi substrate) into aqueous zinc solution. The zinc array mounted on the ImSi substrate catalyzed the conversion from CO(2) to HCO(3) (-), and accelerated the formation of calcium carbonate. In situ X-ray diffraction data of the formed calcium carbonate on the poly(L-aspartate)-coated chitin substrate (pAsp substrate), with calcium ion-recognition sites, demonstrated that the interaction between the zinc array and pAsp substrates formed both vaterite and calcite at low temperature (15 degrees C) and mainly vaterite at 25 degrees C; this interaction also controlled the morphology of calcium carbonate formed on pAsp substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号